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Last week's blog entry discussed relocations and how they apply to the RISC-V toolchain. This
week we'll be delving a bit deeper into the RISC-V linker to discuss linker relaxation, a concept
so important it has greatly shaped the design of the RISC-V ISA. Linker relaxation is a
mechanism for optimizing programs at link-time, as opposed to traditional program
optimization which happens at compile-time. This blog will follow an example linker relaxation
through the toolchain, demonstrate an example of how linker relaxations meaningfully
improve the performance of a real program and introduce a new RISC-V relocation. We'll shy
away from discussing the impact of linker relaxations on the RISC-V ISA, until another blog
entry.
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Just like last time, we'll start with a simple C test program that's not linked against anything
else. This program won't perform a sane computation, the goal is just that it's simple enough
to get the point across. I'll skip the assembly this time: as this post is about the linker, we can't
really discuss anything until we get to an object file. Since you're now an expert in the
toolchain, I'll just blast out some commands here:

$ cat test.c
int func(int a) __attribute__((noinline));
int func(int a) { 
  return a + 1; 
} 

int _start(int a) { 
  return func(a); 
} 
$ riscv64-unknown-linux-gnu-gcc test.c -o test -O3
$ riscv64-unknown-linux-gnu-objdump -d -r test.o
test.o:     file format elf64-littleriscv 
Disassembly of section .text: 

0000000000000000 <func>�
   0:   2505                    addiw   a0,a0,1 
   2:   8082                    ret 

0000000000000004 <_start>�
   4:   00000317                auipc   ra,0x0
                        4: R_RISCV_CALL func
                        4: R_RISCV_RELAX        *ABS* 
   8:   00030067                jr      ra

You can now see a new RISC-V relocation: R_RISCV_CALL. This relocation sits between an auipc and
a jalr instruction (here disassembled as the jr shorthand as this is a tail call) and points to the
symbol that should be the target of the jump, in this case the func symbol. The R_RISCV_CALL
relocation is paired with a R_RISCV_RELAX relocation, which allows the linker to relax this
relocation pair -- the whole point of this blog!

In order to understand relaxation, we first must examine the RISC-V ISA a bit. In the RISC-V
ISA there are two unconditional control transfer instructions: jalr, which jumps to an absolute
address as specified by an immediate offset from a register; and jal, which jumps to a pc-
relative offset as specified by an immediate. The only differences between the auipc+jalr pair in
this object file and a single jal are that the pair can address a 32-bit signed offset from the
current PC while the jal can only address a 21-bit signed offset from the current PC, and that
the jal instruction is half the size (which is a good proxy for twice the speed).

As the compiler cannot know if the offset between _start and func will fit within a 21-bit offset,
it is forced to generate the longer call. We don't want to impose this cost in cases where it's
not necessary, so we instead optimize this case in the linker. Let's look at the executable to see
the result of linker relaxation:

$ riscv64-unknown-linux-gnu-objdump -d -r test
test:     file format elf64-littleriscv 

Disassembly of section .text: 
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0000000000010078 <func>�
   10078:       2505                    addiw   a0,a0,1 
   1007a:       8082                    ret 

000000000001007c <_start>�
   1007c:       ffdff06f                j       10078 <func>

As you can see, the linker knows that the call from _start to func fits within the 21-bit offset of
the jal instruction and converts it to a single instruction.

The RISC-V Implementation of Linker Relaxation

While the concept of linker relaxation is fairly straight-forward, there are a lot of tricky details
that need to be done correctly in order to ensure the linker produces the correct symbol
addresses everywhere. To the best of my knowledge, the RISC-V BFD port make the most
aggressive use of linker relaxations: essentially no .text section symbol addresses are known
until link time. This has a few interesting side effects:

.align directives must be handled by the linker for any relaxable sections.
Debug information must be emitted twice: once by the compiler for the object file and
once again by the linker for the executable.

All these points probably warrant blog posts of their own -- some of these are planned, others
require me to fix some bugs before I feel comfortable talking about them :).

The actual implementation of linker relaxation is, as you'd expect, fairly esoteric. The code lives
in _bfd_riscv_relax_section inside binutils-gdb/bfd/elfnn-riscv.c, which looks roughly like the
following:

_bfd_riscv_relax_section: 
  if section shouldn't be relaxed:
    return DONE 
  for each relocation:
    if relocation is relaxable: 
      store per-relocation function pointer 
    read the symbol table 
    obtain the symbol's address 
    call the per-relocation function

Essentially, all it's doing is some shared bookkeeping code and then calling a relocation-
specific function to actually relax the relocation. The relax functions all look somewhat similar,
so I'll show an example of the function that relaxes R_RISCV_CALL relocation that was discussed
above

_bfd_riscv_relax_call:
  compute a pessimistic address range 
  if relocation doesn't fit into a UJ-type immediate: 
    return DONE 
  compute offsets for various short jumps 
  if RVC is enabled and the relocation fits in a C.JAL: 
    convert the jump to c.jal 
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  if relocation fits in an JAL: 
    convert the jump to a jal 
  if call target is near absolute address 0:
    convert the jump to a x0-offset JALR
  delete the JALR, as it's not necessary anymore

While this specific function only relaxes the R_RISCV_CALL relocation, it follows the pattern that
most of the implementations of the relaxation functions do:

generic_relax_function: 
  add some slack to the address, as all addresses can move
  for each possible instruction to shorten the relocation:
    if possible instruction can fit the target address: 
      replace the relocation
      cleanup 
      return DONE 
  return DONE 

There's one of these functions for each class of relocations that the RISC-V toolchain knows
how to relax:

_bfd_riscv_relax_call: relaxes two-instruction auipc+jalr sequences via the R_RISCV_CALL and
R_RISCV_CALL_PLT relocations.
_bfd_riscv_relax_lui: relaxes two-instruction lui+addi-like sequences via the
R_RISCV_HI20+R_RISCV_LO12_I-like relocation pairs. The second instruction/relocation can be
any of the various instructions that matches a R_RISCV_LO12_I or R_RISCV_LO12_S relocation (addi,
lw, sd, etc).
_bfd_riscv_relax_pc: Relaxes two-instruction auipc+addi-like sequences via the
R_RISCV_PCREL_HI20'+'R_RISCV_PCREL_LO12_I-like relocation pairs. Much like the lui case there's a
handful of relocation types possible for the second one, all of which are PC-relative.
_bfd_riscv_relax_tls_le: Relaxes thread local storage references when using the local
executable model. We'll talk about TLS is a later blog, as there's a lot going on here.
_bfd_riscv_relax_align: Relaxes .align directives in text sections. This is another on we'll
discuss later, but one specific interesting constraint here is that R_RISCV_ALIGN relocations
must be relaxed for correctness, which means they're relaxed even when relaxations are
otherwise disabled.

Relaxing Against the Global Pointer

It may seem like linker relaxation involves a huge amount of complexity for a small gain: we
trade knowing no .text section symbol addresses until link time for shortening a few
sequences by a single instruction. As it turns out, linker relaxation is very important for getting
good performance on real code. For our first time looking at real code, we'll take a look at the
Dhrystone benchmark -- in addition to being super simple, Dhrystone also spends a lot of
time loading from global variables and therefore benefits very clearly from linker relaxation.

Let's take a look at the Dhrystone source code first. While it's a bit more complicated than the
examples that have been present in this blog so far, if you look closely the code is actually
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pretty straightforward. Here's the source for one Dhrystone function, along with the
definitions of the various global variables it references:

/* Global Variables: */ 
Boolean         Bool_Glob;
char            Ch_1_Glob,
                Ch_2_Glob;

Proc_4 () /* without parameters */
/*******/ 
    /* executed once */ 
{ 
  Boolean Bool_Loc; 

  Bool_Loc = Ch_1_Glob �� 'A';
  Bool_Glob = Bool_Loc | Bool_Glob; 
  Ch_2_Glob = 'B';
} /* Proc_4 */

As you can see, the code performs three accesses to global variables in order to do a simple
comparison and a logical operation. While this might seem kind of silly, this is what a lot of
the Dhrystone benchmark looks like. Since Dhrystone is pretty much the only benchmark that
will actually run everywhere (SPECInt won't run on my wristwatch, for example), it's still used
as the baseline for many microarchitectural comparisons so we need to make it go fast.

In order to understand the specific relaxation that's being performed in this case, it's probably
best to start with the code the toolchain generates before this optimization, which I've copied
below:

0000000040400826 <Proc_4>�
    40400826:   3fc00797                auipc   a5,0x3fc00
    4040082a:   f777c783                lbu     a5,-137(a5) # 8000079d <Ch_1_Glob>
    4040082e:   3fc00717                auipc   a4,0x3fc00
    40400832:   f7272703                lw      a4,-142(a4) # 800007a0 <Bool_Glob>
    40400836:   fbf78793                addi    a5,a5,-65 
    4040083a:   0017b793                seqz    a5,a5 
    4040083e:   8fd9                    or      a5,a5,a4
    40400840:   3fc00717                auipc   a4,0x3fc00
    40400844:   f6f72023                sw      a5,-160(a4) # 800007a0 <Bool_Glob>
    40400848:   3fc00797                auipc   a5,0x3fc00
    4040084c:   04200713                li      a4,66 
    40400850:   f4e78a23                sb      a4,-172(a5) # 8000079c <Ch_2_Glob>
    40400854:   8082                    ret 

As you can see, this function consists of 13 instructions, 4 of which are auipc instructions. All of
these auipc instructions are used to calculate the addresses of global variables for a subsequent
memory access, and all of these generated addresses are within a 12-bit offset of each other. If
you're thinking "we only really need one of these auipc instructions", you're both right and
wrong: while we could generate a single auipc (though that requires some GCC work we
haven't done yet and is thus the subject of a future blog post), we can actually do one better
and get by with zero auipc instructions!
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If you've just gone and pored over the RISC-V ISA manual to find an instruction that loads
Ch_1_Glob (which lives at 0x8000079D) in a single instruction then you should give up now, as there
isn't one. There is, of course, a trick -- it is common on register-rich, addressing-mode-poor
ISAs to have a dedicated ABI register known as the global pointer that contains an address in
the .data segment. The linker is then capable of relaxing accesses to global variables that live
within a 12-bit signed offset from this value -- essentially we've just cached the lui in the
global pointer register, optimizing this common code path.

In order to get a bit more visibility into how this works, let's take a look at a snippet of GCC's
default linker script for RISC-V:

/* We want the small data sections together, so single-instruction offsets
   can access them all, and initialized data all before uninitialized, so 
   we can shorten the on-disk segment size.  */ 
.sdata          : 
{ 
  __global_pointer$ = . + 0x800;
  *(.srodata.cst16) *(.srodata.cst8) *(.srodata.cst4) *(.srodata.cst2) *(.srodata .srodata.*) 
  *(.sdata .sdata.* .gnu.linkonce.s.*)
} 
_edata = �� PROVIDE (edata = .);
. = ��
__bss_start = ��
.sbss           : 
{ 
  *(.dynsbss) 
  *(.sbss .sbss.* .gnu.linkonce.sb.*) 
  *(.scommon) 

As you can see, the magic __global_pointer$ symbol is defined to point 0x800 bytes past the start
of the .sdata section. The 0x800 magic number allows signed 12-bit offsets from __global_pointer$
to address symbols at the start of the .sdata section. The linker assumes that if this symbol is
defined, then the gp register contains that value, which it can then use to relax accesses to
global symbols within that 12-bit range. The compiler treats the gp register as a constant so it
doesn't need to be saved or restored, which means it is generally only written by _start, the ELF
entry point. Here's an example from the RISC-V newlib port's crt0.S file

.option push

.option norelax 
1:auipc gp, %pcrel_hi(__global_pointer$)
  addi  gp, gp, %pcrel_lo(1b) 
.option pop 

Note that we need to disable relaxations while setting gp, otherwise the linker would relax this
two-instruction sequence to mv gp, gp

The actual implementation of the relaxation, which lives in _bfd_riscv_relax_lui and
_bfd_riscv_relax_pc, is fairly boring. Like all the other relaxations, it performs some bounds
checks, deletes the unused instruction and then converts the short-offset instruction to a
different type. We may delve deeper into the implementation of various linker relaxations in
future blog posts, but for now I'll just drop the relaxed output here to demonstrate it actually
works:
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00000000400003f0 <Proc_4>�
    400003f0:   8651c783                lbu     a5,-1947(gp) # 80001fbd <Ch_1_Glob> 
    400003f4:   8681a703                lw      a4,-1944(gp) # 80001fc0 <Bool_Glob> 
    400003f8:   fbf78793                addi    a5,a5,-65 
    400003fc:   0017b793                seqz    a5,a5 
    40000400:   00e7e7b3                or      a5,a5,a4
    40000404:   86f1a423                sw      a5,-1944(gp) # 80001fc0 <Bool_Glob> 
    40000408:   04200713                li      a4,66 
    4000040c:   86e18223                sb      a4,-1948(gp) # 80001fbc <Ch_2_Glob> 
    40000410:   00008067                ret 

12-bit Offsets aren't Enough for Anyone

Just to be clear: linker relaxations are an optimization for the common case. The linker
transparently emits two-instruction addressing sequences for symbols that it cannot optimize.
To demonstrate what happens when the linker can't relax a symbol, let's go through another
example:

$ cat relax.c 
long near;
long far[2];

long data(void) { 
  return near | far;
} 

int main() {
  return data();
} 
$ riscv64-unknown-linux-gnu-gcc relax.c -O3 -o relax --save-temps 
$ riscv64-unknown-linux-gnu-objdump -d relax.o
relax.o:     file format elf64-littleriscv

Disassembly of section .text: 

0000000000000000 data:
   0:   000007b7                lui     a5,0x0
                        0: R_RISCV_HI20 near
                        0: R_RISCV_RELAX        *ABS* 
   4:   0007b503                ld      a0,0(a5) # 0 data 
                        4: R_RISCV_LO12_I       near
                        4: R_RISCV_RELAX        *ABS* 
   8:   000007b7                lui     a5,0x0
                        8: R_RISCV_HI20 far 
                        8: R_RISCV_RELAX        *ABS* 
   c:   0007b783                ld      a5,0(a5) # 0 data 
                        c: R_RISCV_LO12_I       far 
                        c: R_RISCV_RELAX        *ABS* 
  10:   8d5d                    or      a0,a0,a5
  12:   8082                    ret 

Disassembly of section .text.startup: 

0000000000000000 main:
   0:   1141                    addi    sp,sp,-16 
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   2:   e406                    sd      ra,8(sp)
   4:   00000097                auipc   ra,0x0
                        4: R_RISCV_CALL data
                        4: R_RISCV_RELAX        *ABS* 
   8:   000080e7                jalr    ra
   c:   60a2                    ld      ra,8(sp)
   e:   2501                    sext.w  a0,a0 
  10:   0141                    addi    sp,sp,16
  12:   8082                    ret 

Here we can see three relocations groups: two HI20/LO12 relocation pairs and a CALL relocation. In
this case, the CALL relocation can be relaxed as can the HI20/LO12 pair that references near, but the
HI20/LO12 pair that references far can't. In this case the linker still functions correctly, producing a
single-instruction addressing sequence for the near symbol it can relax while just relocating the
addressing sequence for the far symbol that it can't reference with a single instruction.

$ riscv64-unknown-linux-gnu-objdump -d -r relax 
Disassembly of section .text: 

0000000000010330 main:
   10330:       1141                    addi    sp,sp,-16 
   10332:       e406                    sd      ra,8(sp)
   10334:       0b8000ef                jal     ra,103ec data 
   10338:       60a2                    ld      ra,8(sp)
   1033a:       2501                    sext.w  a0,a0 
   1033c:       0141                    addi    sp,sp,16
   1033e:       8082                    ret 

00000000000103ec data:
   103ec:       8181b503                ld      a0,-2024(gp) # 12038 near 
   103f0:       67e9                    lui     a5,0x1a 
   103f2:       0407b783                ld      a5,64(a5) # 1a040 far 
   103f6:       8d5d                    or      a0,a0,a5
   103f8:       8082                    ret 

Though it might be a bit redundant at this point, I already had the following examples written
out so I figured I'd just leave them here to be a bit more explicit:

--- relax.o 
��� relax 
-      4:   00000097                auipc   ra,0x0
-                           4: R_RISCV_CALL         data
-                           4: R_RISCV_RELAX        *ABS* 
-      8:   000080e7                jalr    ra
+  10334:   0b8000ef                jal     ra,103ec data 

In the example above, we can see the R_RISCV_CALL relocation is requested. This relocation is
defined to operate over an adjacent auipc/jalr pair, referencing a signed 32-bit PC-relative call
target. In this case we were able to relax this instruction pair to a single jal instruction as the
actual call target was within a 21-bit signed offset from the current PC. You'll find that almost
all R_RISCV_CALL relocations will be relaxable, as most code expresses some amount of call
locality.
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--- relax.o 
��� relax 
-      0:   000007b7                lui     a5,0x0
-                          0: R_RISCV_HI20         near 
-                          0: R_RISCV_RELAX        *ABS*
-      4:   0007b503                ld      a0,0(a5) # 0 data 
-                          4: R_RISCV_LO12_I       near 
-                          4: R_RISCV_RELAX        *ABS*
+  103ec:   8181b503                ld      a0,-2024(gp) # 12038 near 

In the example above, we can see a R_RISCV_HI20/R_RISCV_LO12_I relocation pair is requested. These
relocations are each defined to operate over a single instruction: the R_RISCV_HI20 relocates the
20-bit offset of a lui while the R_RISCV_LO12_I relocates the 12-bit offset of various I-type
instructions (ld in this example). In this case we were able to relax this instruction pair to a
single ld instruction, as the final symbol address was within a 12-bit offset of gp, the global
pointer.

--- relax.o 
��� relax 
-      8:   000007b7                lui     a5,0x0
-                           8: R_RISCV_HI20         far 
-                           8: R_RISCV_RELAX        *ABS* 
-      c:   0007b783                ld      a5,0(a5) # 0 data 
-                           c: R_RISCV_LO12_I       far 
-                           c: R_RISCV_RELAX        *ABS* 
+  103f0:   67e9                    lui     a5,0x1a 
+  103f2:   0407b783                ld      a5,64(a5) # 1a040 far 

In the example above, we see another R_RISCV_HI20/R_RISCV_LO12_I, but this time we can't relax it as
it's not within a 12-bit offset of gp. Note that we still generate the correct code for this case by
filling out the relocations. You will get a link-time error whenever it is impossible to correctly
relocate a requested relocation, as otherwise the linked executable wouldn't produce the
correct answer.

Stay tuned, as there's a whole lot more to come on linker relaxations in future blog posts.
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